


-	-Apr - 2018 Permutation and Combination,
	Permutation: order is important.
	Combination: order is not important.
-	
7	$\binom{n}{r} = nCr = \frac{n!}{(n-r)!r!}$
	(r) $(r-r)!r!$
-	"n choose r"
	from n objects, choose r objects out of n randomly (order not important).
	eo (5) = 5c3 = 51
	$eg \begin{pmatrix} 5 \\ 3 \end{pmatrix} = 5c3 = 5!$ $2!3!$
	Note: Pascal's triangle:
	n=2
	n=2
	4co 4c1 4c2 4c3 4c4
-	Fact: $\binom{n}{r} = \binom{n}{n-r}$
	$\therefore 10C3 = 10C7.$
	Suppose $(a+b)^2$ $n \in \mathbb{N}^*$
	then $(a+b)^n = a^n + (n)a^{n-1}b + (n)a^{n-2}b^2 + (n)a'b^{n-1} + b^n$
	Suppose $(a+b)^n$, $n \in \mathbb{N}^*$ then $(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \binom{n}{n-1}a^{1}b^{n-1} + b^n$
_	$= \binom{n}{0} a^{n} b^{0} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{n-1} a^{n-1} b^{n-1} + \binom{n}{n} a^{0} b^{n}.$
	$prove: (n) + (n) + (n) + (n) = 2^n$
	prove: $\binom{n}{o} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$.
1	26-Apr-2018:
	Eq: $20C3 = 20! = 20 \times 19 \times 18$ $3! 17! = 3 \times 2 \times 1$
	Question: Suppose (a+b)30. Give me the coefficient of a2b28.
	Ans: $coef = 30c28 = 30c2$
	Question: Suppose there are 22 students in MTH 213. Ayman shakes hand w/ every
	one. Every student shakes hand wil every other student exactly once. How many hand shakes are there?
	Ans: 22C2 + 22?
	question! A bike lock has 1 digit combination.
	1st digit = 3-7
	2nd digit = 1-8
1	3rd digit = 5-9
-	4th digit = 2-7. Find total number of all possible combinations. Ansigna 5 x 8 x 5 x 6 = 1200 combinations.
1 1	
	2220NNSV 93

Question: Same as above, each digit is a number 1-9 and no repetition. Ans: $9P4 = 9 \times 8 \times 7 \times 6 = 9! = 3024$ Question: Imagine there are 6 holes and 4 balls of distinct colors (red, yellow, green, white). Put each of the 4 balls in one of the holes . We Ans: We randomly choose 4 holes (combination). Then apply the permutation (6C4) - (4P4) choose 4 holes out of question: Assume there are 22 students, we need to form a committee of 4 people. Ans: 22 C4 (choose 4 out of 22 randomly). Question: Assume 22 students, 10 female, 12 Male. There are 4 available positions President Prov Asst. Prov Secretary (has to be male) (male) (female) (fea female). How many possible outcomes? Ans: (12 P2) x (10 P2) outcomes among outcomes among \rightarrow order is important. $(A, Y) \neq (Y, A)$ males females **D**)